The R_i human factor: human vision

- No biological change in the detector at century scales (eye + visual cortex)
- Capacity to "integrate" seeing distortions (not a simple averaging !):
 - Visual cortex plays an essential role
 - Until recently (SDO, HMI), capacity to detect the smallest spots was superior to photography and CCD

Imaging data not directly comparable or substitutable:

 Effects of sensor/optical resolution, seeing will have a different influence on the resulting counts for images and human eye

The R_i human factor: optical factors

- No specific aperture required for SIDC contributing observers
- How is the detection of the smallest spots influenced by the resolution?
- Two factors:
- Theoretical optical resolution (unobstructed aperture):
 - Rayleigh criterion:
 - Dawes criterion: $\theta = 116/D(mm)$
- Seeing:
 - variable with time, daytime range similar for all low-altitude sites:
 1.5 to 3, typ. 2 arcsec (equiv. D= 45 90 mm, typ. 70 mm)

 $\theta = 138/D(mm)$

Large apertures more affected (size of turbulent eddies ~8 -12 cm):

Reduces the difference of effective resolution between small and large apertures (> 10 cm)

What is the smallest possible sunspot ?

- Various definitions:
 - Semantic problem "pore" vs "sunspot":
 - Pore = small spot without penumbra
 - Pore = random intergranular blemishes that are not real sunspots

Source	Spot diameter	Spot lifetime	Pore diameter	Pore lifetime
Bray & Laughhead 1964	With penumbra		Without penumbra	
Waldmeier (Husar 1967)	>3" (2000km) = 1 granule	> 30 min	< 3″	< 30min
Bruzec & Durrant 1977	>10" (6000km)	> 1 day	< 5″	< 1 day
McIntosh 1981	> 4" (2500km) = 1 granule		< 4″	

- Overall agreement: lowest spot size near 2000 km (3 arcsec)
 - Dictated by granulation dynamics rather than spots (cancellation of convective motion): lifetime: avg. 10 min (up to 30 min)

Sunspots and "pores"

۲

What is the smallest possible sunspot ?

• Best "observational" definition:

	Diameter	Lifetime	Outline	Contrast	Penumbra
Granulati on (pore)	< 3″ < 2500km	< 30 min	Fuzzy Irregular	low	none
Sunspot	> 3″ > 2500 km	> 30 min	Sharp ~ round	High Dark core	none

- Simple criteria naturally adopted by all observers
 - No major discrepancies due to personal subjective interpretation
- Match of the smallest real-spot angular size with usual seeing (3 arcsec) and telescope aperture D= 50 mm:
 - Limited gain in small spot counts at apertures > 50 80 mm

(cf. Svalgaard, private communication)

Small-aperture bias only expected for early historical observations before the 19th century (D << 70mm)

The R_i human factor: SIDC "freewheel" philosophy

- No detailed counting rules imposed to SIDC observers.
 - Observers reluctant to obey rules
 - Danger of imposed rules: slow insidious return to natural practices
 - Relying on the observer experience:
 - Same observer & instrument over years or decades

Long term self-consistency is more important than equivalence to a model (network average, pilot station)

Importance of dedicated amateurs vs "volatile" professionals.

The R_i human factor: random variations

Causes of random variations:

- Daily mood, mistakes
- Daily changes of the observer (group splitting, umbral splitting)
- Seeing variations
- Random daily subset of network contributors (local weather) ~50/85
- Sampling = One-day binning (UT) >> "aliasing":
 - Fast small-scale changes in active regions (small short-lived spots)
 - Limb transits of large active regions
 - Strong effect mainly when a single spot/group on the solar disk!

Equivalent to detector noise

- Filtered out by the daily tracking of K coefficients:
 - Elimination of outliers based on standard deviation of daily K values.

Main biases: Group and umbral splitting

Group splitting:

- Topological criteria without external information (magnetograms)
- No general scientific rule
- Impact on W number limited:
 - Involves only a minority of groups
 - Can raise or lower W

• Umbral splitting:

- Each umbra in common penumbra is counted as a separate spot (Wolfer rule)
- Two umbrae considered as split only if separated by a complete light bridge
- Prone to interpretation
- Can lead to a net bias

Various group splitting rules (Kunzel 1976):

- Non-bipolar groups: all spots within 5°x5° (60,000 x 60,000 km)
- Bipolar groups: up to 20° extension
- Rules for marginal cases:
 - Two spots up to 15° apart form a single group if they are the remainder of a large extended group
 - A bipolar collection of spots forms one group if Lat(West) ≤ Lat(East)
 - Typical tilt angles: 1-2° at 10° latitude, 4° at 30° latitude

The R_i human factor: observer bias

• Causes of biases:

- Splitting of large complex groups
- Splitting of multiple umbrae in common penumbra
- Frantic quest for the largest count (including tiny ephemeral blemishes)
- Prior consultation of other observations (WEB CCD images) leading to expectations:
 - Bias emerging in recent years?
- Sources of trends (slow variations in the personal biases):
 - Observer ageing (visual acuity; age > 50)
 - Trend in sky quality (urbanization)
 - Slow evolution of network members
 - Instrument ageing

Tracked by K-coefficient system:

- Uncorrelated biases (network): independent worldwide observations
- One special case: the Zürich-Locarno reference station

An essential step: processing method

- Change in the data processing method

 primary cause of possible biases
 - **Problem common to all indices**
- Zürich-Locarno Sunspot Index:
 - Choice to drop smallest spots (Wolf)
 - Magnetic needle corrections (Wolf)
 - Weighting of sunspot counts (Wolfer Waldmeier ?)
 - Change of primary station (Zürich Locarno)
 - Change in the composition of network (observer mix, geographical distribution): e.g. Zürich-SIDC transition
 - Smaller impact for large networks (SIDC strategy)
 - Manual method: sparsely documented (occasional indications scattered over many different issues of the Mitteilungen)

An essential step: processing method

The case of the American number R_{A} (AAVSO): •

- Lack of reference station
- Manual processing
- Additional observer rating factor
- Flaws in the processing method: found after 50 years
- Original data lost before 1992
 No correction possible

The Golden rules

- Archival of all raw input data 1.
- Detailed documentation of the processing method and definitions and of 2. the observing technique
- **Tracking of processing changes** 3.
- Change only when it is essential (e.g. discovery of a flaw) 4.
- 5. Long overlap periods:

old and new indices computed in parallel (min. one solar cycle)