KEPLER Mission: Planets for Everyone

A

Kepler Mission

The Kepler space telescope's primary goal is to use transit photometry to detect exo-planets like Earth: Rocky and in the Habitable Zone of a solar-like star.

This mission is of great significance to our understanding of the universe and our place in it.

Kepler will obtain a statistically valid result by monitoring > 100,000 stars within a 100 sq. deg region of the sky.

The Habitable Zone

A Search for Earth-size Planets

What is an Exo-planet?

A planet that orbits a star other than our Sun.
The upper planet mass -the planet-star (brown dwarf) boundary - is fuzzy, but roughly a body orbiting a star with a mass $\sim 13-15$ Jupiter masses or less is considered a planet.
Late-type red dwarfs, brown dwarfs, and Jupiters are all
~equal in radius

What is a Pirates Favorite
Planet?
MARRRRRRRRRRRRRRs!

Techniques for Finding Exo-Planets

How to Detect Planets

using Doppler Shift

Doppler shift planet discovery Keplèr

Planet Orbiting Star HD46375

Direct Imaging !

Planets Orbiting HR 8799
 (Sept. 2008)

$+$
July 2004

Nasa Kepler will use the Transit Method Keplèr

HST measurement of HD209458

Transits tell us: Planet radius, orbit size, \& density
Likelihood of transit is governed by orbital plane geometry. About 10% for very close-in large planets while only $\sim 0.5 \%$ for true-Earth analogs. Short orbital periods and larger planets are favored.

- 82 Ground-based exo-planet surveys are underway
- Doppler, transit, imaging, astrometry
- 21 space missions: 5 are current, remaining planned
- Current dedicated missions use transits
- Dedicated Planet Missions w/ ability to find Earths CoRoT (CNES)
Kepler (NASA)
- Useful Planet Finders/Follow-up Missions MOST (Canada)
HST (photometry, astrometry)
Spitzer Space telescope (thermal imaging)
What have we found so far? (Pre-Kepler, November 1, 2009)

Radial velocity or astrometry

320 planetary systems 376 planets 38 multiple planets Transiting planets
62 planetary systems 62 planets 3 multiple planets

Candidates detected by microlensing

8 planetary systems 9 planets 1 multiple planet
Candidates detected by imaging
9 planetary systems 11 planets 1 multiple planet

Candidates detected by timing

4 planetary systems 7 planets 2 multiple planets 403 Total Exo-planets

EXTRA-SOLAR PLANETS

Characteristics:

Orbital Period (days) vs. Number of known Exo-Planets

EXTRA-SOLAR PLANETS

Characteristics:

Semi-Major Axis (AU) vs. Number of known Exo-Planets

EXTRA-SOLAR PLANETS

Characteristics:

Mass vs. Semi-Major axis

- The relative change in brightness is equal to the area ratio: $A_{\text {planet }} / A_{\text {star }}$

Jupiter:
1% area of the Sun $(1 / 100)$

Earth or Venus
0.01% area of the Sun $(1 / 10,000)$

- To measure 0.01% must get above the Earth's atmosphere
- Allows continuous observation (no pesky Sun getting in the way, no Weather issues)
- Patience required:

Must observe 3+ transits, with same brightness drop, duration and period: near 3 years to complete

- What is the frequency of Earth-size planets in or near the Habitable Zone (HZ) of solar-like stars?
- What are the frequency \& orbital distributions of planets in star systems?

- What are the distributions of semi-major axes, albedo, size, and mass, of shortperiod planets?

Kepler Mission

KEPLER: A Wide Field-of-View Photometer that Monitors 100,000+ Stars for 3.5 yrs with Enough Precision to Find Earth-size Planets in the Habitable Zone

Use transit photometry to detect Earth-size planets

- 0.95 meter aperture provides enough photons
- Observe for several years to detect transit patterns
- Monitor a single large area on the sky continuously to avoid missing transits
- Use heliocentric orbit
- Up to 170,000 targets at 30 min cadence \& 512 at 1 min

Get statistically valid results by monitoring; 100,000 stars

- Wide Field-of-view telescope (100 sq deg)
- Large array of CCD detectors

PREPARING FOR LAUNCH

- CCD Focal Plane being assembled

PREPARING FOR LAUNCH

- Spacecraft bus \& Primary Mirror

Telescope Schematic

A Search for Earth-size Planets

Drawing and Reality

LAUNCH ON MARCH 6, 2009

KEPLER SPACECRAFT ORBIT

A Search for Earth-size Planets

Kepler Field of View

SAMPLE LIGHT CURVES

SAMPLE LIGHT CURVES

Magenta = expected noise (nonvariable)

Blue = measured

Green = 1000 dwarfs

Red $=1000$ giants

Dwarf Nova - V344 Lyr

A Search for Earth-size Planets

False Transits can be caused by:

1. M dwarfs transiting giants and supergiants
2. White dwarfs transiting solar-type stars
3. Grazing eclipses of one star by another
4. Full eclipses in a faint background binary whose light is blended with a foreground bright star
5. Triple systems - difficult in short term
6. Other even more insidious effects

- \quad SNR > 7, to rule out statistical fluctuations
- Three or more transits to confirm orbital periodicity
- Light curve depth, shape, and duration consistent
- Image subtraction to identify signals from background stars
- Radial velocity
- Medium precision to rule out stellar companions
- High precision to measure mass of super-Earths and giant planets
- Rossiter-McLaughlin effect to confirm orbiting planet
- High spatial resolution images to identify extremely close background stars; Observe eclipse of background stars.
- Check for color change during transit
- More tests as the mission progresses and planets get smaller

16,620 HATNet data points (57.7 days of data)
HAT-P-7b data from the ground A. Pal et al., 2008

BINARY WITH CIRCUMBINARY PLANET?
 NASA HQ View ;-)

A Search for Earth-size Planets
"Kepler will answer at least one big question:

Are there
other planets like ours in the universe?"

