

Two-Color Photometry of the Double-Mode RR Lyrae Star, NSVS-5222076

Dave Hurdis Toby Point Observatory Narragansett, RI

97th Annual Meeting of the AAVSO Nantucket, Massachusetts Saturday, October 18, 2008

Project Objectives

1. Replicate Michigan State Univ.'s V-band observations of the RRd star, NSVS-5222076.

a. Improve the accuracy of MSU's period determinations by combining my V-band observations with theirs, thus enlarging the observation time-window from 108-days to 1306-days.

- 2. Observe NSVS-5222076 in the **I**-band.
- 3. Determine the star's variation in **V I** color as a function of time.
- 4. Upload my V and I observations to the AAVSO database.

RR Lyrae Stars

Population-II (very old)

Evolved from MS to HB via RGB

Progenitor mass » 0.8 M

On Instability Strip

RR Lyrae Stars

Alternating double-ionization and recombination of singlyionized helium acts like a valve that maintains pulsation.

Double-Mode RR Lyrae Stars and Why They Are Important

Double-mode RR Lyrae (RRd) stars pulsate in two independent modes, the fundamental and the 1st overtone.

Usually (but not always) the 1st overtone amplitude is greater than the amplitude of the fundamental, so the light curve looks sinusoidal, like that of an RRc.

After maximum expansion, the star's layers free-fall inward. This is a special case of orbital motion (along a straight line), so the falling gas must obey Kepler's Third Law:

$$P^2/R^3 = 4\pi^2/GM$$
 where: P is pulsation period
R = star radius and
 $P^2 \propto R^3/M$

So, two independent periods provide two equations to independently determine the two unknowns, R and M.

or

NSVS 5222076

Identified by Oaster (2005) in Northern Sky Variability Survey (NSVS) data as possible new double-mode RR Lyr (RRd) star.

RRd nature confirmed by Oaster, Smith & Kinemuchi (2006).

Unusual among RRd stars in that its fundamental mode is the dominant pulsation mode, <u>not</u> the 1st overtone. Consequently, its light curve looks more like an RRab than an RRc.

NSVS 5222076 is a field star, conveniently located for Northern Hemisphere observers:

> a (2000)= 15:46:26 d (2000)= +44:18:47 Located in Bootes, and not far from M-13.

Field of NSVS 5222076

NSVS 5222076 Discovery Observations

ROTSE-I

Four 200-mm f/1.8 Canon telephoto lenses, each with an unfiltered 2048 x 2048 CCD camera. Credit: Univ. of Michigan.

Northern Sky Variability Survey (NSVS)

ROTSE-I data were used by Oaster (2005) for the discovery of NSVS-5222076. 218 observations over a 285-day window between Apr 99 and Jan 00.

ROTSE-I data: noisy and unfiltered. Obtained from: http://skydot.lanl.gov/nsvs/nsvs.php

Phase diagram for, $P_0 = 0.49405$ days

NSVS 5222076 MSU Observations

Oaster, L., Smith, H. A., and Kinemuchi, K., *A Double-Mode RR Lyrae Star with a Strong Fundamental-Mode Component*, PASP, *118:* 405-409, 2006 March.

Lindsay Oaster, recently at McMaster Univ.

Horace A. Smith, Michigan State Univ.

Karen Kinemuchi, Univ.of Florida

60-cm telescope Apogee Ap47p CCD camera (1024 x 1024) MSU Campus Observatory

NSVS 5222076 MSU Observations

Phase diagram for, P₀ = 0.4940 days 1570 observations from 16 nights over a 108-day window (Feb – Jun 2005)

NSVS 5222076 MSU Observations

Initial period analysis is dominated by the fundamental and its harmonics.

Upon prewhitening (i.e., removal of the fundamental and its harmonics) the 1^{st} overtone period, P_1 , emerges:

Refined period analysis: $P_0 = 0.4940 \pm 0.0001$ days ±0.0011

NSVS 5222076 Observations

Toby Point Observatory, Narragansett, RI

Meade 40-cm LX-200 SCT

SBIG ST-8XME CCD Camera Pixels binned 2x2 to give 765 x 510

Custom Scientific Johnson-Cousins (Bessel) Filter Set

NSVS 5222076 V-Band Observations

Toby Point Observatory, Narragansett, RI

Phase diagram for, P₀ = 0.4941 days. 235 stacks from 1109 **V-band** observations from 14 nights over an 89-day window (Jun – Sep 2008)

NSVS 5222076 Observations

MSU V-data combined with TPO V-data

Phase diagram for, $P_0 = 0.49405$ days. 1570 MSU observations plus 235 TPO stacks from 29 nights over a 1306-day window (Feb 05 – Sep 08)

MSU Combined with TPO V-data

Refined period analysis: $P_0 = 0.49405 \pm 0.00007$ days

NSVS 5222076 I-Band Observations

Toby Point Observatory, Narragansett, RI

Phase diagram for, P₀ = 0.4941 days. 231 stacks from 1051 **I-band** observations from 14 nights over an 89-day window (Jun – Sep 2008)

NSVS 5222076 I-Band Observations

Refined period analysis: $P_0 = 0.4941 \pm 0.0011$ days

 1^{st} overtone, $P_1 = 0.3670 \pm 0.0005$ days

Determination of V-I Colors

Why high signal-to-noise ratio photometry is essential for determining V-I colors accurately:

 $V = 13.10 \pm 0.03$

 $I = 12.60 \pm 0.03$

 $V - I = 0.50 \pm 0.06$

NSVS 5222076 V-I Colors

Toby Point Observatory, Narragansett, RI

Phase diagram for, P₀ = 0.4941 days. 201 **V–I colors** from 14 nights of stacked **V-band** and **I-band** images taken over an 89-day window (Jun – Sep 2008)

NSVS 5222076 V-I Colors

Refined period analysis: $P_0 = 0.4941 \pm 0.0012$ days

 1^{st} overtone, P₁ = 0.3667 ± 0.0005 days

SUMMARY

1. Michigan State V-band observations successfully replicated.

a. Estimated period errors improved by factors of 15 and 27. MSU Data Alone MSU plus TPO Data

 $P_0 = 0.4940 \pm 0.0011$ days $P_1 = 0.3669 \pm 0.0008$ days $P_1 / P_0 = 0.743$

 $P_0 = 0.49405 \pm 0.00007 \text{ days} \\ P_1 = 0.36690 \pm 0.00003 \text{ days} \\ P_1 / P_0 = 0.7426$

2. I-band observations and photometry were carried out.

SUMMARY

3. V – I color variation of NSVS-5222076 has been estimated.

QUESTIONS?

BACK-UP SLIDES

NSVS 5222076 V-Band Observations

Toby Point Observatory, Narragansett, RI

Phase diagram for, $P_0 = 0.4942$ days. 1110 **V-band** observations from 14 nights over an 89-day window (Jun – Sep 2008)

NSVS 5222076 Observations

MSU V-data combined with TPO V-data

Phase diagram for, P₀ = 0.49405 days. 1570 MSU observations plus 1110 TPO observations from 29 nights over a 1306-day window (Feb 05 – Sep 08)

NSVS 5222076 I-Band Observations

Toby Point Observatory, Narragansett, RI

Phase diagram for, $P_0 = 0.4942$ days. 1062 **I-band** observations from 14 nights over an 89-day window (Jun – Sep 2008)

NSVS 5222076 V-I Colors

Toby Point Observatory, Narragansett, RI

Phase diagram for, P₀ = 0.4940 days. 969 **V–I colors** from 14 nights of **V-band** and **I-band** images taken over an 89-day window (Jun – Sep 2008)

NSVS 5222076 V-I Colors

Toby Point Observatory, Narragansett, RI

Phase diagram for, P₀ = 0.4941 days. 201 **V–I colors** from 14 nights of stacked **V-band** and **I-band** images taken over an 89-day window (Jun – Sep 2008)