Disks in Astrophysics

Brian Kloppenborg

August 6, 2009

▲□→ < □→</p>

-∢ ≣ ≯

Brian Kloppenborg University of Denver Disks in Astrophysics

Outline

Star Formation and Binary Evolution Methods for Observing Real Disks Relevance to Epsilon Aurigae

Outline

1 Star Formation and Binary Evolution

- Single Star Formation
- Binary Star Evolution
- Disk Evolution

2 Methods for Observing Real Disks

- Imaging
- SEDs and Photometry
- Polarimetry
- Interferometry

3 Relevance to Epsilon Aurigae

- Photometry and SEDs
- Polarimetry
- Interferometry

A ►

Single Star Formation Binary Star Evolution Disk Evolution

イロト イヨト イヨト イヨト

æ

Single Star Formation

Images Courtsey of SSC IR Compendium

a Cloud of gas and dust

Single Star Formation Binary Star Evolution Disk Evolution

イロン イヨン イヨン イヨン

Single Star Formation

- a Cloud of gas and dust
- b Gravitational collapse

Single Star Formation Binary Star Evolution Disk Evolution

<ロ> <同> <同> <同> < 同>

- ∢ ⊒ ⊳

Single Star Formation

- a Cloud of gas and dust
- b Gravitational collapse
- c Conservation of angular momentum and collisions cause disk to form.

Single Star Formation Binary Star Evolution Disk Evolution

イロト イヨト イヨト イヨト

Single Star Formation

- a Cloud of gas and dust
- b Gravitational collapse
- c Conservation of angular momentum and collisions cause disk to form.
- d Envelope has dissapated or collapsed into the disk.

Single Star Formation Binary Star Evolution Disk Evolution

イロト イヨト イヨト イヨト

Single Star Formation

- a Cloud of gas and dust
- b Gravitational collapse
- c Conservation of angular momentum and collisions cause disk to form.
- d Envelope has dissapated or collapsed into the disk.
- e Collisions inside disk cause planetesimals for form, clearing the disk of debris.

Single Star Formation Binary Star Evolution Disk Evolution

・ロト ・回ト ・ヨト

Single Star Formation

- a Cloud of gas and dust
- b Gravitational collapse
- c Conservation of angular momentum and collisions cause disk to form.
- d Envelope has dissapated or collapsed into the disk.
- e Collisions inside disk cause planetesimals for form, clearing the disk of debris.
- f Star "ignites" hydrogen in its core.

Single Star Formation Binary Star Evolution Disk Evolution

Binary Star Evolution

Artist's impression of 4U 1820-30, image courtsey of NASA's HEASARC

Like single star evolution except:

- Roche Lobe Overflowing
- Mass Transfer Streams
- Ensuing Disk Hot Spots

Disk Evolution

Single Star Formation Binary Star Evolution Disk Evolution

イロト イヨト イヨト イヨト

æ

Artist Impressions of Disk Evolution

Brian Kloppenborg University of Denver Disks in Astrophysics

Disk Evolution

Single Star Formation Binary Star Evolution Disk Evolution

Artist Impressions of Disk Evolution

Slightly Above Disk

Images Courtesy of STScI

Edge-On

・ロト ・日本 ・モート ・モート

Disk Evolution

Single Star Formation Binary Star Evolution Disk Evolution

Artist Impressions of Disk Evolution

Slightly Above Disk

Images Courtesy of STScI

Disk Evolution

Single Star Formation **Binary Star Evolution** Disk Evolution

Artist Impressions of Disk Evolution

Slightly Above Disk

Images Courtesy of STScI

Edge-On

・ロト ・回ト ・ヨト ・ヨト

æ

Direct Imaging

Butterfly Star

Karl Stapelfeldt (JPL) and colleagues, and NASA

Imaging SEDs and Photometry Polarimetry Interferometry

Herbig-Haro (HH) 6-5

D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA

Direct Imaging

HK Tauri

Karl Stapelfeldt (JPL) and colleagues, and NASA

Imaging SEDs and Photometry Polarimetry Interferometry

HH 30

Chris Burrows (STScI), the WFPC2 Science Team and NASA

Direct Imaging

DG Tauri B

(IR), D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA

Imaging SEDs and Photometry Polarimetry Interferometry

DG Tauri B

(Hubble), Chris Burrows (STScI), the WFPC2 Science Team and NASA

Direct Imaging

HD 141569

(Near IR), B. Smith (U. Hawaii), A. Weinberger, E. Becklin (UCLA), and G. Schneider (U. Arizona)

Imaging SEDs and Photometry Polarimetry Interferometry

HD 141569

(Hubble), M. Clampin (NASA Goddard)

Imaging SEDs and Photometry Polarimetry Interferometry

イロン 不同と 不同と 不同と

æ

Spectral Energy Distributions (SEDs)

Brian Kloppenborg University of Denver Disks in Astrophysics

Imaging SEDs and Photometry Polarimetry Interferometry

イロト イヨト イヨト イヨト

Spectral Energy Distributions (SEDs)

Blackbody Radiation is a First-Order approximation for radiation from objects. Blackbody radiation is described by Planck's Law:

$$I(\lambda, T) = rac{2hc^2}{\lambda^5} rac{1}{e^{rac{hc}{\lambda kT} - 1}}$$

Imaging SEDs and Photometry Polarimetry Interferometry

Spectral Energy Distributions (SEDs)

Example SED for a Several Blackbody Radiators

Imaging SEDs and Photometry Polarimetry Interferometry

Spectral Energy Distributions (SEDs)

Blackbody Radiation Curves for a Hot Primary and Cool Secondary

Imaging SEDs and Photometry Polarimetry Interferometry

イロン イヨン イヨン イヨン

æ

Photometry

Photometry measures the brightness of stars in specific passbands.

Imaging SEDs and Photometry Polarimetry Interferometry

Photometry

Imaging SEDs and Photometry Polarimetry Interferometry

Photometry Can Determine

 Period of variable stars, minor planets, AGNs, transiting extrasolar planets.

Photometry

Imaging SEDs and Photometry Polarimetry Interferometry

Photometry Can Determine

 Period of variable stars, minor planets, AGNs, transiting extrasolar planets.

Photometry

• Luminosity of an object (if distance is known).

Imaging SEDs and Photometry Polarimetry Interferometry

Photometry Can Determine

 Period of variable stars, minor planets, AGNs, transiting extrasolar planets.

Photometry

- Luminosity of an object (if distance is known).
- Blackbody Temperature of an object.

イロト イヨト イヨト イヨト

Imaging SEDs and Photometry Polarimetry Interferometry

Photometry Can Determine

 Period of variable stars, minor planets, AGNs, transiting extrasolar planets.

Photometry

- Luminosity of an object (if distance is known).
- Blackbody Temperature of an object.
- Total energy output of supernovae.

イロト イヨト イヨト イヨト

Imaging SEDs and Photometry Polarimetry Interferometry

・ロト ・回ト ・ヨト ・ヨト

æ

Polarimetry

Brian Kloppenborg University of Denver Disks in Astrophysics

Imaging SEDs and Photometry Polarimetry Interferometry

Polarimetry

MDI Continuum image of the Sun courtesy of SOHO

< 🗗 >

≣ ▶

Imaging SEDs and Photometry Polarimetry Interferometry

æ

Polarimetry

Brian Kloppenborg University of Denver Disks in Astrophysics

Imaging SEDs and Photometry Polarimetry Interferometry

・ロト ・回ト ・ヨト

Polarimetry

A Disk Can Cause a Net Polarization.

Polarization from a Disk. HST Image of AU Mic Debris Disk courtesy of NASA, ESA, and J. Graham (UC, Berkeley)

Imaging SEDs and Photometry Polarimetry Interferometry

Interferometry

Interferometry provides a method of indirectly imaging objects too small for traditional imaging devices.

Imaging SEDs and Photometry Polarimetry Interferometry

Interferometry

Brian Kloppenborg University of Denver

Disks in Astrophysics

< ≣⇒

æ

Imaging SEDs and Photometry Polarimetry Interferometry

Interferometry

PTI Schematic Diagram

Schematic Drawing of PTI Optical Components (Colavita, 1999)

イロト イヨト イヨト イヨト

Imaging SEDs and Photometry Polarimetry Interferometry

Fringes

Fringes as seen by an Interferometer (Hecht, 2002)

Visibility Squared:

$$V^2 = \left(\frac{I_{max} - I_{min}}{I_{max} + I_{min}}\right)^2$$

・ロト ・回ト ・ヨト ・ヨト

æ

Photometry and SEDs Polarimetry Interferometry

- 4 回 2 - 4 □ 2 - 4 □

Current Model of ϵ Aurigae

Model of ϵ Aurigae System (NASA, 1985)

Brian Kloppenborg University of Denver Disks in Astrophysics

Photometry and SEDs Polarimetry Interferometry

- 4 回 2 - 4 □ 2 - 4 □

æ

Photometric Observations

Photometric Observations during Eclipse 1848 Schmidt (see Gussow, 1936), others?

Photometry and SEDs Polarimetry Interferometry

A (1) > A (1) > A

- ∢ ⊒ →

Photometric Observations

Photometric Observations during Eclipse 1848 Schmidt (see Gussow, 1936), others? 1875 Schmidt (see Gussow, 1936), others?

Photometry and SEDs Polarimetry Interferometry

< 🗇 > < 🖃 >

Photometric Observations

Photometric Observations during Eclipse 1848 Schmidt (see Gussow, 1936), others? 1875 Schmidt (see Gussow, 1936), others? 1902 Schwab (see Gussow, 1936), others?

Photometry and SEDs Polarimetry Interferometry

< 🗇 > < 🖃 >

Photometric Observations

Photometric Observations during Eclipse

- 1848 Schmidt (see Gussow, 1936), others?
- 1875 Schmidt (see Gussow, 1936), others?
- 1902 Schwab (see Gussow, 1936), others?
- 1929 Gussow et. al. (1936), Huffer (1932 ApJ 71 1)

Photometry and SEDs Polarimetry Interferometry

< 🗇 > < 🖃 >

Photometric Observations

- Photometric Observations during Eclipse
- 1848 Schmidt (see Gussow, 1936), others?
- 1875 Schmidt (see Gussow, 1936), others?
- 1902 Schwab (see Gussow, 1936), others?
- 1929 Gussow et. al. (1936), Huffer (1932 ApJ 71 1)
- 1955 Gyldenkerne (1970), Larsson-Leander (1958)

Photometry and SEDs Polarimetry Interferometry

< 🗇 > < 🖃 >

Photometric Observations

- Photometric Observations during Eclipse
- 1848 Schmidt (see Gussow, 1936), others?
- 1875 Schmidt (see Gussow, 1936), others?
- 1902 Schwab (see Gussow, 1936), others?
- 1929 Gussow et. al. (1936), Huffer (1932 ApJ 71 1)
- 1955 Gyldenkerne (1970), Larsson-Leander (1958)
- 1985 Hopkins, Ingvarsson, Ake, Backman, Böhme, several others.

Photometry and SEDs Polarimetry Interferometry

< 🗇 > < 🖃 >

Photometric Observations

- Photometric Observations during Eclipse
- 1848 Schmidt (see Gussow, 1936), others?
- 1875 Schmidt (see Gussow, 1936), others?
- 1902 Schwab (see Gussow, 1936), others?
- 1929 Gussow et. al. (1936), Huffer (1932 ApJ 71 1)
- 1955 Gyldenkerne (1970), Larsson-Leander (1958)
- 1985 Hopkins, Ingvarsson, Ake, Backman, Böhme, several others.
- 2009 *Your Name Here*

Photometry and SEDs Polarimetry Interferometry

Models from Photometric Data

1965 Huang: Dark rectangular object moving across star face.

Schematic Diagram for ϵ Aur with light curve (Huang, 1965)

Photometry and SEDs Polarimetry Interferometry

Models from Photometric Data

- 1965 Huang: Dark rectangular object moving across star face.
- 1971 Wilson: Geometrically Thin, Optically Thick disk with Hole in Center.

Schematic Diagram for ϵ Aur with light curve (Huang, 1965)

イロト イヨト イヨト イヨト

Photometry and SEDs Polarimetry Interferometry

Models from Photometric Data

- 1965 Huang: Dark rectangular object moving across star face.
- 1971 Wilson: Geometrically Thin, Optically Thick disk with Hole in Center.
- 1974 Huang: Comparison of Thin/Thick Disk Models with Observed Light Curves.

Schematic Diagram for ϵ Aur with light curve (Huang, 1965)

イロト イヨト イヨト イヨト

Photometry and SEDs Polarimetry Interferometry

Models from Photometric Data

- 1965 Huang: Dark rectangular object moving across star face.
- 1971 Wilson: Geometrically Thin, Optically Thick disk with Hole in Center.
- 1974 Huang: Comparison of Thin/Thick Disk Models with Observed Light Curves.
- 1990 Ferluga: Disk with Semitransparent Rings.

Three best-fitting ringed disk models to photometric curves. Units are in AU, *j* is the inclination angle (exaggerated in figures) (Ferluga, 1990)

Photometry and SEDs Polarimetry Interferometry

э

Photometry

Brian Kloppenborg University of Denver Disks in Astrophysics

Photometry and SEDs Polarimetry Interferometry

SEDs

IR Excecess as found by IRAS (Backman, 1985). Solid Line opaque secondary, T = 475K, $\Omega = 8.6 \times 10^{-16}$ sr; Dashed Line optically thin secondary T = 575K, $\Omega = 4.4 \times 10^{-16}$ sr, particle radius 5.1 μ m s = 0.000 sr

Photometry and SEDs Polarimetry Interferometry

Polarimetry

1985 Kemp: Polarization Curve During Eclipse with preliminary model.

In-eclipse Polarization Data for ϵ Aur with light curve (Kemp, 1986)

▲ □ ► < □ ►</p>

-

Photometry and SEDs Polarimetry Interferometry

Polarimetry

- 1985 Kemp: Polarization Curve During Eclipse with preliminary model.
- 1986 Kemp: Detailed Model for Polarization Curve.

Model for Polarization Data (Kemp, 1986)

▲□→ < □→</p>

3

Photometry and SEDs Polarimetry Interferometry

Polarimetry

In-eclipse Polarization Data for ϵ Aur with light curve (Kemp, 1986)

Theoretical Curves for Kemp's Model. (Kemp, 1986)

・ロト ・日本 ・モート ・モート

Photometry and SEDs Polarimetry Interferometry

Polarimetry

- 1985 Kemp: Polarization Curve During Eclipse with preliminary model.
- 1986 Kemp: Detailed Model for Polarization Curve.
- 1989 Henson: Possible detection of non-radial pulsation.

Right: Possible Pulsation Modes of ϵ Aur (Henson, 1989)

Disks in Astrophysics

Photometry and SEDs Polarimetry Interferometry

Palomar Testbed Interferometer

Aerial View of PTI and the 200" Palomar Telescope (Gerald van Belle)

- PTI Operated by the Michelson Science Center on behalf of CalTech and NASA-JPL
- Maximum Baseline, 110 meters
- Resolution 1.67 2.18 mas (8.1 - 10.5 nano-radians)

イロト イヨト イヨト イヨト

Photometry and SEDs Polarimetry Interferometry

・ロン ・回 と ・ 回 と ・ 回 と

3

PTI: Reduced Data

UTDate.	GMT start	Baseline*	Nscans	Mode	V ²	UDD	Error	V
JD-2,450,000						[mas]	[mas]	[mag]
2007Oct19, 4393	09:57	NS	14	K-low	0.516	2.19	0.06	3.036
2007Oct20, 4394	10:21	NS	6	K-high	0.544	2.16	0.12	3.036
2007Oct21, 4395	10:45	NS	3	K-low	0.583	1.90	0.13	3.036
2007Dec23, 4458	04:41	NW	6	K-low	0.574	2.36	0.14	3.046
2007Dec24, 4459	04:48	NW	6	K-low	0.565	2.37	0.11	3.043
2008Feb16, 4513	03:05	NW	2	K-low	0.527	2.60	0.15	2.98
2008Feb17, 4514	04:48	NW	5	K-low	0.572	2.28	0.15	2.98
2008Feb18, 4515	03:01	NW	5	K-low	0.624	2.25	0.12	2.98
New Data								
2008Oct26, 4765	08:20	NW	4	K-low	0.609	2.35	0.16	3.052
2008Oct26, 4765	08:30	NS	5	K-low	0.491	2.16	0.08	3.052
2008Nov8, 4778	08:49	NS	12	K-low	0.435	2.34	0.08	3.057
2009Nov9, 4779	09:22	NW	1	K-low	0.462	2.86	0.10	3.054
Archival Data								
1997Oct22, 0744	11:54	NS	1	K-low	0.376	2.50	0.17	2.986
1997Nov09, 0762	09:38	NS	2	K-low	0.438	2.32	0.09	2.977
1998Nov07, 1125	10:25	NS	4	K-low	0.515	2.09	0.10	2.997
1998Nov25, 1143	10:19	NS	2	K-low	0.458	2.25	0.08	2.998
2005Dec11, 3715	06:33	NW	86	Insufficient Data Points				3.02
2006Jan31, 3766	04:27	NW	86	No Cal Stars				3.08

Diameters obtained from Wide-Band Visibility mode data. *N-S baseline, 109 meters; N-W baseline, 86 meters.

Data prior to Oct. 2008 published in Stencel et. al 2008. V-band data courtesy of Jeffery Hopkins.

Photometry and SEDs Polarimetry Interferometry

- 4 回 2 - 4 □ 2 - 4 □

æ

Acknowledgements

- Dr. Robert Stencel
- William Hershel Womble Estate
- Ming Zhao (University of Michigan)