Evolutionary Status of Epsilon Aurigae

Brian Kloppenborg

September 3, 2010

Brian Kloppenborg Evolutionary Status of Epsilon Aurigae

Outline

Background Material

- Why we care about stellar evolution
- The HR Diagram

2 Stellar Evolution in 10 Minutes

- Single Star Formation and Evolution
- Binary Star Evolution

3 The Evolutionary Status of ϵ Aur

Why we care about stellar evolution The HR Diagram

Why we care about evolutionary state

- Where the star was, what it did there
- Where the star will be going, what it will do

- Testing Nuclear Theory
- The Astrophysical Laboratory
- We are made of stardust

Background Material

Stellar Evolution in 10 Minutes The Evolutionary Status of ϵ Aur Why we care about stellar evolution The HR Diagram

HR Diagram

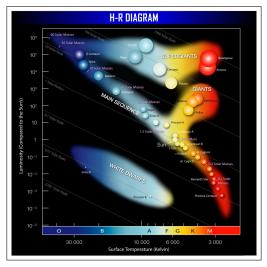
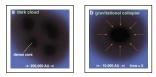


Image Courtesy of the Museum of Flight

<ロ> <同> <同> < 同> < 同> < 同>

Single Star Formation and Evolution Binary Star Evolution

Single Star Formation


Images Courtesy of SSC IR Compendium

・ロン ・回と ・ヨン・

Single Star Formation and Evolution Binary Star Evolution

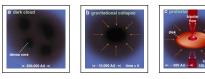
Single Star Formation

Images Courtesy of SSC IR Compendium

- Cloud of gas and dust
- ② Gravitational collapse

Single Star Formation and Evolution Binary Star Evolution

Single Star Formation

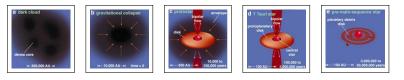


Images Courtesy of SSC IR Compendium

- Cloud of gas and dust
- ② Gravitational collapse
- Onservation of angular momentum and collisions cause disk to form.

Single Star Formation and Evolution Binary Star Evolution

Single Star Formation



Images Courtesy of SSC IR Compendium

- Cloud of gas and dust
- ② Gravitational collapse
- Onservation of angular momentum and collisions cause disk to form.
- Invelope has dissipated or collapsed into the disk.

Single Star Formation and Evolution Binary Star Evolution

Single Star Formation

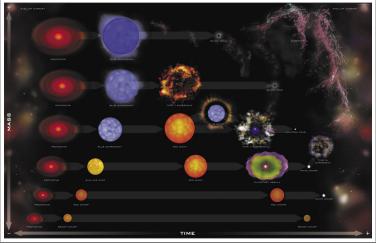
Images Courtesy of SSC IR Compendium

- Cloud of gas and dust
- ② Gravitational collapse
- Onservation of angular momentum and collisions cause disk to form.
- Invelope has dissipated or collapsed into the disk.
- Ollisions inside disk cause planetesimal for form, clearing the disk of debris.

イロン イヨン イヨン イヨン

Single Star Formation and Evolution Binary Star Evolution

Single Star Formation



Images Courtesy of SSC IR Compendium

- Cloud of gas and dust
- ② Gravitational collapse
- Onservation of angular momentum and collisions cause disk to form.
- Invelope has dissipated or collapsed into the disk.
- Ollisions inside disk cause planetesimal for form, clearing the disk of debris.
- Star ignites hydrogen in its core.

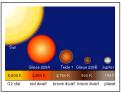
Single Star Formation and Evolution Binary Star Evolution

Mass Dictates Evolution*

Images Courtesy of CHANDRA EPO

* Composition changes evolution too, but it's a far second compared to mass.

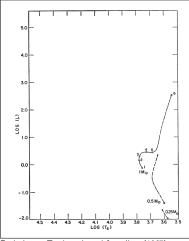
< □ > < 三 >


< ≣⇒

Single Star Formation and Evolution Binary Star Evolution

Substellar objects

Image Courtesy of HST Gallery, PRC95-45 STSCI OPO


American Scientist/Linda Huff

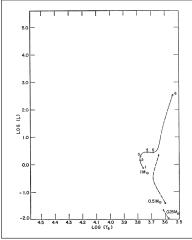
- No Hydrogen Fusion
- Powered by gravitational collapse, Deuterium (²H or ²D) burning
- Masses below 0.085 M_{\odot} (75 M_{γ})
- $T_{eff} \approx 900 \ K$
- Sometimes Show Stellar-like activity

イロン 不同と 不同と 不同と

Single Star Formation and Evolution Binary Star Evolution

Low-mass Stellar Evolution

Evolutionary Tracks, adapted from Iben (1967)


• M < 0.3 M_{\odot} remains on MS for more than τ_{Hubble}

<**₽** < ₹

-≣->

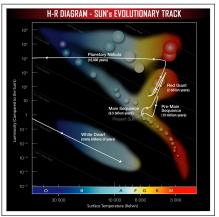
Single Star Formation and Evolution Binary Star Evolution

Low-mass Stellar Evolution

Evolutionary Tracks, adapted from Iben (1967)

- M < 0.3 M_{\odot} remains on MS for more than τ_{Hubble}
- M > 0.3 M_☉ H in core exhausted, climbs up RGB
- H burning in shell, star swells. He ash falls on core
- He core becomes degenerate

<**●** ► < **■** ►

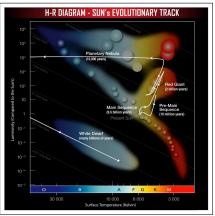

∃ >

 M < 0.4 M_☉ core degeneracy never lifted, becomes He white dwarf

Single Star Formation and Evolution Binary Star Evolution

Intermediate Mass Stars

• $0.4 < M < 6-10 M_{\odot}$ Degeneracy is lifted (He flash)

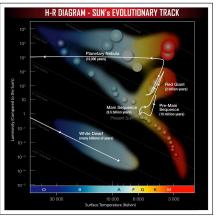


イロン イヨン イヨン イヨン

Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- $0.4 < M < 6-10 M_{\odot}$ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts



イロト イヨト イヨト イヨト

Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch

イロト イヨト イヨト イヨト

Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash

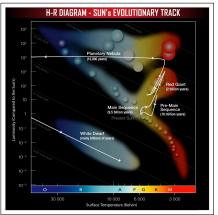


Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB

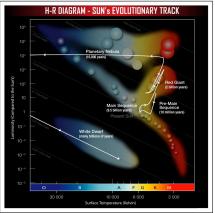


Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss

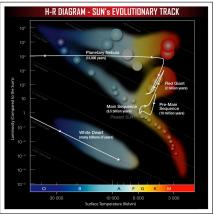


Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss
- Fusion ceases, star contracts maintaining Luminosity

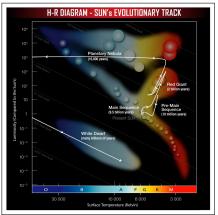


Image Courtesy of the Museum of Flight

Intermediate Mass Stars

- 0.4 < M < 6-10 M_☉ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss
- Fusion ceases, star contracts maintaining Luminosity
- Evolves into planetary nebulae whose core becomes a WD

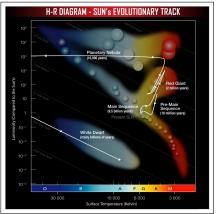
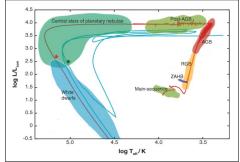



Image Courtesy of the Museum of Flight

Single Star Formation and Evolution Binary Star Evolution

Intermediate-Mass Phase: Post-AGB

- Low to intermediate initial mass (1 - 8 M_☉) transitioning between AGB and PN
- Not very well understood
- Fairly short lived $(10^2 10^3 \text{ yr})$
- Often shrouded in dust with silicate or carbonate features in the IR
- Look like Supergiant in many respects
- Detailed Spectral Analysis needed, will reveal s-process elements
- Several Unstable Pulsation Modes
- Good AAVSO Observing opportunity

Evolution of a $2M_{\odot}$ star (Herwig, 2005)

Massive Stars

Single Star Formation and Evolution Binary Star Evolution

• M > 10 M_{\odot}

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Massive Stars

- M > 10 M_{\odot}
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless Envelope cannot respond fast enough.

Dominant fuel		$T_{\mathbf{c}}$	Duration	Important products
Carbon			10 ³ -10 ⁴ yr	
Neon	8 ×	10 ⁸ K	$10^{2}-10^{3}$ yr	Mg, some O
Oxygen	$1 \times$	10^9 K	< 1 yr	Si, some S, etc.
Silicon	$3 \times$: 10 ⁹ K	days	⁵⁶ Ni

<->
</>
</>
</>
</>
</l>

∃ >

Stellar Timescales (Hansen, 2004)

Single Star Formation and Evolution Binary Star Evolution

Massive Stars


- M > 10 M_{\odot}
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless Envelope cannot respond fast enough.
- Stars Become Highly Layered

He Re G G G

Single Star Formation and Evolution

Binary Star Evolution

Layering in Highly Evolved Stars (Wikimedia Commons)

Massive Stars


- M > 10 M_{\odot}
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless Envelope cannot respond fast enough.
- Stars Become Highly Layered
- Core Collapse

H He Re S S S S S

Single Star Formation and Evolution

Binary Star Evolution

Layering in Highly Evolved Stars (Wikimedia Commons)

Massive Stars

- M > 10 M_{\odot}
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless Envelope cannot respond fast enough.
- Stars Become Highly Layered
- Core Collapse

Single Star Formation and Evolution

Binary Star Evolution

Image Credit: Hester (2005) via. HST

・ロト ・日本 ・モート ・モート

Single Star Formation and Evolution Binary Star Evolution

Binary Star Evolution

・ロト ・回ト ・ヨト ・ヨト

Single Star Formation and Evolution Binary Star Evolution

Binary Star Evolution

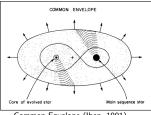

Roche Lobes (Hansen, 2004)

Roche Lobes

イロン イヨン イヨン イヨン

Single Star Formation and Evolution Binary Star Evolution

Binary Star Evolution


Roche Lobe Overflow (Hansen, 2004)

- Roche Lobes
- Roche Lobe overflow, mass transfer

・ロン ・回と ・ヨン・

Single Star Formation and Evolution **Binary Star Evolution**

Binary Star Evolution

Common Envelope (Iben, 1991)

- Roche Lobes
- Roche Lobe overflow, mass transfer

・ロン ・回と ・ヨン・

æ

Common Envelope Phase

Single Star Formation and Evolution Binary Star Evolution

Other Stellar Evolution Concerns

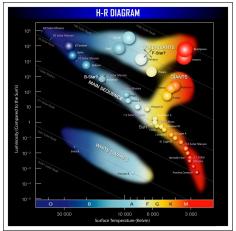
Single Stars:

- Stellar Composition
- Rotation
- Mixing/Convection

Binary Stars:

- Non-spherical cores
- Tidal Interactions (including Tidal Heating)

ϵ Aur on the HR diagram


イロン イヨン イヨン イヨン

Э

ϵ Aur on the HR diagram

 ϵ Aurigae F-star Stats:

- Temperature: 7750 K
- Radius:
 135 R_☉
- Luminosity: $> 10^4$

< ≣ >

Image Courtesy of the Museum of Flight

The Evolutionary Status of eps Aur

Summarizing Webbink's 1985 Review of the Evolutionary State:

- High-Mass: Massive star in the post-main sequence star burning Helium in a shell
- Low-Mass: Star is contracting towards white dwarf (post-AGB)

F-star Stats

F-star Stats:

 \bullet Size: 135 \pm 5 ${\sf R}_{\odot}$ (Interferometry, SED Fitting)

<ロ> (日) (日) (日) (日) (日)

F-star Stats

F-star Stats:

- Size: 135 \pm 5 R $_{\odot}$ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but

F-star Stats

F-star Stats:

 \bullet Size: 135 \pm 5 ${\rm R}_{\odot}$ (Interferometry, SED Fitting)

• Spectra: Appears Supergiant, but

• $[12 \text{CO}/13 \text{CO}] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)

 $\begin{array}{c} {\sf Background\ Material}\\ {\sf Stellar\ Evolution\ in\ 10\ Minutes}\\ {\sf The\ Evolutionary\ Status\ of\ }\epsilon\ {\sf Aur} \end{array}$

F-star Stats

F-star Stats:

- $\bullet\,$ Size: 135 \pm 5 ${\sf R}_{\odot}$ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but
 - $[12CO/13CO] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)

- 4 同 2 4 日 2 4 日 2

 $\begin{array}{c} {\sf Background\ Material}\\ {\sf Stellar\ Evolution\ in\ 10\ Minutes}\\ {\sf The\ Evolutionary\ Status\ of\ }\epsilon\ {\sf Aur} \end{array}$

F-star Stats

F-star Stats:

- $\bullet\,$ Size: 135 \pm 5 ${\sf R}_{\odot}$ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but
 - $[12CO/13CO] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)

- A 🗇 N - A 🖻 N - A 🖻 N

 $\begin{array}{c} {\sf Background\ Material}\\ {\sf Stellar\ Evolution\ in\ 10\ Minutes}\\ {\sf The\ Evolutionary\ Status\ of\ }\epsilon\ {\sf Aur} \end{array}$

F-star Stats

F-star Stats:

- \bullet Size: 135 \pm 5 ${\sf R}_{\odot}$ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but
 - $[12CO/13CO] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)
- Masses: 3.6 \pm 0.7 (Kloppenborg et. al. 2010), 2.2 \pm 0.9 (Hoard et. al. 2010)

・ロン ・回と ・ ヨン

F-star Stats

F-star Stats:

- \bullet Size: 135 \pm 5 ${\sf R}_{\odot}$ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but
 - $[12CO/13CO] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)
- Masses: 3.6 \pm 0.7 (Kloppenborg et. al. 2010), 2.2 \pm 0.9 (Hoard et. al. 2010)

Appears to support the low-mass, post-AGB model

Problems with this interpretation

Problems:

- post-AGB stars often have:
 - Circumbinary disks
 - Period/temperature changes (your observations help here)
 - Molecular and/or crystalline emission lines
- Spectral analysis shows oddities, could be non-LTE?

- ∢ ⊒ →

Remaining Work

- Need a modern spectroscopic analysis
- Look for changing Period and Temperature in/from historical and CS observational data

イロン イヨン イヨン イヨン

Acknowledgements

- Citizen Sky Participants
- AAVSO Staff: Rebecca, Aaron, Arne
- Funding: AAVSO, NSF
- Dr. Robert Stencel
- William Hershel Womble Estate

(4月) (日)